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Robust H∞ rotating consensus control
for second-order multi-agent systems

with uncertainty and time-varying
delay in three-dimensional space1

Ping Li2, Kaiyu Qin2

Abstract. The robust delay-dependent H∞ control problems for rotating consensus of
second-order multi-agent systems is studied, which is subject to uncertainty, external disturbances
and time-varying delay in three-dimensional space. First, a rotating consensus is defined in three-
dimensional space. Then a distributed control protocol based on state feedback of neighbors is
designed. In the next place, a sufficient delay-dependent condition in terms of the matrix inequal-
ities is derived to make all agents asymptotically reach rotating consensus with the desired H∞
performance index. Furthermore, an algorithm is elaborately designed to get a feasible solution
to this condition. Finally, simulation results are provided to illustrate the effectiveness of our
theoretical results and algorithms.

Key words. Multi-agent systems, rotating consensus, H∞ control, uncertainty, time-varying
delay.

1. Introduction

As a special case of the consensus problems, the rotating consensus is used to
describe a class of collective circular motions such as the motion of celestial bodies,
flocks of birds flying around a closed circuit course and schools of fish swimming along
an approximately circular orbit, which can find important potential applications in
formation flight of satellites around the earth, spacecraft docking, circular mobile
sensor networks, etc. However, most of existing results cannot be straightly applied
to imitate or explain such motions and rare results are derived to generate such
motions. In [1], Sepulchre et al. formulated a new rotating formation control problem
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according to application of autonomous underwater vehicles to collect oceanographic
measurements. In [2] and in [3], Lin et al. investigated collective rotating motions
of second-order multi-agent systems on a plane and in three dimensional space,
respectively. In [4], Yang et al. studied distributed rotating consensus in networks
of second-order agents using only local position information in three-dimensional
space. In [5], distributed composite rotating consensus problem was investigated for
second-order multi-agent systems, where all agents move in a nested circular orbit.

As a typical networked system, multi-agent systems often contain disturbances,
uncertainties and time-delay in practical applications. Moreover, the existence of
these facts might destroy the convergence properties of the systems. Therefore,
it is significant to investigate robust consensus problems of multi-agent systems,
which reflect the effects of these facts on their behavior. In the past decade, some
interesting results have been obtained for robust consensus problems in [6–9]. How-
ever, these results cannot be straight applied to robust delay-dependent H∞ control
problems for rotating consensus [10]. So far, only the author of this paper studied
distributed robust H∞ rotating consensus control problems for directed networks of
second-order agents with mixed uncertainties and time-delay in [10], but we only
considered constant time delay, rotating consensus on a plane, and we only obtained
the sufficient conditions that the parameters of control protocols should be satisfied,
but their calculation method was not directly given in [10]. Therefore, this paper
will further study robust delay-dependent H∞ control problems for rotating consen-
sus of second-order multi-agent systems with uncertainty and time-varying delay in
three-dimensional space.

2. State of the art

Consider a multi-agent system consisting of n second-order agents. Each agent
is regarded as a node in a graph G. Suppose that the ith agent

si, (i ∈ Ig, Ig = {1, 2 · · · , n})

has the dynamics as follows:

ṙi(t) = vi(t),
v̇i(t) = ui(t) + wi(t),

(1)

where ri (t), vi (t) denote the position and velocity state of the ith agent si, ui (t)
denote the control input or control protocol of the ith agent, and wi (t) ∈ L2 [0,∞)
denotes the external disturbances of the ith agent. Finally, ri (t), vi (t), ui (t),
wi (t) ∈ R3.

In this paper, our main objective is to design a distributed protocol to make
all agents reach rotating consensus while satisfying the desired H∞ disturbance
attenuation index. It is called that all agents reach rotating consensus if all agents
reach consensus and surround a common point with a desired constant angular
velocity ω ∈ R on a plane, whose normal is a specified unit vector iω ∈ R3. The
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rotating consensus can be defined as follows
Definition 1.[3]: The multi-agent system (1) reaches rotating consensus, if and

only if the states of agents satisfy

lim
t→+∞

iTωvi(t) = 0,

lim
t→+∞

(v̇i(t)− ωRωvi(t)) = 0,

lim
t→+∞

(vi(t)− vk(t)) = 0,

lim
t→+∞

(ci(t)− ck(t)) = 0

(2)

for ∀i, j ∈ Ig, where ω denotes the desired constant angular velocity, ci (t) = ri (t) +
ω−1Rωvi (t)

Rω = RT
ω0Riω (π/2)Rω0Riω (π/2) =

 0 −1 0
1 0 0
0 0 1

 .
3. Methodology

In this section, we will solve H∞ control problem for rotating consensus of multi-
agent systems with parameter uncertainties and time-delay in three-dimensional
space. Firstly, we will design a distributed control protocol. Then, we will deduce
the rule and algorithm for designing state feedback matrix K.

3.1. Protocol design

Based on the state feedback of neighbors, the distributed control protocol we
used is given as

ui(t) = ui1(t) + ui2(t) (3)

for all i ∈ Ig, where

ui1(t) = ωRωvi(t),

ui2(t) = (I3 + ∆B(t))[Kv

∑
sk∈Ni

aik(vk(t− d(t))− vi(t− d(t))] +
+Kc

∑
sk∈Ni

aik(ck(t− d(t))− ci(t− d(t))).

In the protocol,Kv andKv are the state feedback matrices, ω denotes the desired
constant angular velocity, d (t) (0 < d (t) ≤ τ,

∣∣∣ḋ (t)
∣∣∣ < µ) denotes the time-varying

delay, Ni denotes the set of neighbors of agent si and ∆B (t) is a matrix-valued
function representing time-varying parameter uncertainties. The parameter uncer-
tainties are assumed to be norm-bounded and ∆B (t) = GF (t)E, where G and E
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are known constant matrices with appropriate dimensions and F (t) is an unknown
matrix function with Lebesgue measurable elements satisfying FT (t)F (t) ≤ I for
all t ≥ 0.

Define the output functions zi (t), which is computed from the average of the
relative states of all agents as follows:

zi(t) = [zT
i1(t), zT

i2(t)]T ∈ R6, i ∈ Ig, (4)

where zi1 (t) = vi (t)− 1
n

n∑
j=1

vj (t) and zi1 (t) = ci (t)− 1
n

n∑
j=1

cj (t).

Therefore, it is clear that the rotating consensus of the system (1) can be reached
if and only if the states of agent satisfy

lim
t→+∞

zi(t) = 0

lim
t→+∞

[v̇i(t)− ωRωvi(t)] = 0
(5)

for all i ∈ Ig.
Denote

ξ(t) = [ξT
1 (t), · · · , ξT

n (t)]T, ξi(t) = [vT
i (t), cTi (t)]T,

w(t) = [wT
1 (t), · · · , wT

n (t)]T, z(t) = [zT
1 (t), · · · , zT

n (t)]T,

A =

[
ωRω 03

03 03

]
, B1 = B2 =

[
I3

ω−1Rω

]
,

K = [Kv,Kc], ∆B1(t) = B1∆B(t),

C = [Cij ]
n
i,j=1, Cij =

{
n−1
n , i = j,
− 1

n , i 6= j.

By using the protocol (3), the closed-loop dynamics of the system (1) can be written
as

ξ̇(t) = (In ⊗A)ξ(t)−L⊗ [(B1 + ∆B1(t))K]ξ(t− d(t)) + (In ⊗B2)w(t),

z(t) = (C ⊗ I6)ξ(t), 0 < d(t) ≤ τ, ḋ(t) ≤ µ,
(6)

where ⊗ denotes the Kronecker product and L is the Laplacian matrix of graph G.
According to robust control theory, the attenuating ability of consensus perfor-

mance for multi-agent system (1) against external disturbances can be quantitatively
measured by the H∞ norm of the closed-loop transfer function matrix Twz (s) from
the external disturbance w (t) to the controlled output z (t), we design a distributed
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state feedback protocol ui (t) such that

‖ Twz(s) ‖∞< γ (7)

holds for prescribed H∞ disturbance attenuation index γ.

3.2. Some necessary lemmas

Lemma 1. [8]: Assume that the interaction graph G is connected. For a given
γ > 0, the closed-loop system (6) reaches consensus with the desiredH∞ disturbance
attenuation index γ (Twz (s)∞ < γ), if and only if the following n − 1 systems are
simultaneously asymptotically stable with T ŵẑ (s)∞ < γ for i = 1, 2, · · · , n− 1.

˙̂
δi(t) = Aδ̂i(t)− λi(B1 + ∆B1(t))K δ̂i(t− d(t)) +B2ŵi(t),

ẑi(t) = δ̂it), 0 < d(t) ≤ τ, ḋ(t) ≤ µ,
(8)

where λi, (i = 1, 2, n− 1) are positive eigenvalues of the Laplacian matrix L, and
δ̂i (t) , ŵi (t) , ẑi (t) ∈ R6.

Lemma 2. (Schur complement formula) [6]: For a given symmetric matrix S
with the form S = [Sij ], S11 ∈ Rr×r, S12 ∈ Rr×(n−r) or S22 ∈ R(n−r)×(n−r), then
S < 0 if and only if S11 < 0, S22−S21S

−1
11 S12 < 0 or S22 < 0, S11−S12S

−1
22 S21 < 0.

Consider a nominal time delay system as follows:

ẋ(t) = Ax(t) +Adx(t− d(t)) +Bww(t),

z(t) = Cx(t), 0 < d(t) ≤ τ, ḋ(t) ≤ µ.
(9)

A bounded real lemma (BRL) will be introduced in the following part.
Lemma 3. (BRL) [12]: For a given γ, τ, µ > 0, the nominal time delay system (9)

is asymptotically stable with Cwz (s)∞ < γ, if there exist positive definite matrices
P , Q, R, S and matricesM1,M2, N1, N2 with appropriate dimensions such that

Γ =



Γ11 Γ12 −M1 PBw τATS τM1 τN1

∗ Γ22 −M2 0 τATd S τM2 τN2

∗ ∗ −R 0 0 0 0

∗ ∗ −γ2I τBT
wS 0 0

∗ ∗ ∗ ∗ −τS 0 0
∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −S


< 0 (10)

where
Γ11 = PA+ATP +Q+R+N1 +NT

1 +CTC ,

Γ12 = PAd +M1 −N1 +NT
2 ,

Γ12 = (µ− 1)Q+M2 +MT
2 −N2 −NT

2 .
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3.3. Condition of robust H∞ rotating consensus

Theorem 1. Assume that the interaction graph G is connected. For given
positive constants τ , µ and γ, by distributed protocol (3), multi-agent system (1)
can reach rotating consensus while satisfying desired H∞ disturbance attenuation
index, if there exist positive definite matrices Q, R, S, T , X ∈ R6×6, matricesM1,
M2, N1, N2 ∈ R6×6, Y ∈ R3×6 and a positive scalar ε such that

Φi =


Φi0 ΠT

i1 ΠT
2 HT

∗ −T + ελ2
i τ

2B1GG
TBT

1 0 0

∗ ∗ −XT−1X 0
∗ ∗ ∗ −εI

 < 0 (11)

is satisfied for i = 1 and n− 1, where

Φi0 =



Φi11 Φi12 −M1 B2 0 τM1 τN1 X
∗ Φ22 −M2 0 0 τM2 τN2 0
∗ ∗ −R 0 0 0 0 0
∗ ∗ ∗ −γ2I 0 0 0 0
∗ ∗ ∗ ∗ −τS 0 0 0
∗ ∗ ∗ ∗ ∗ −τS 0 0
∗ ∗ ∗ ∗ ∗ ∗ −τS 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Φi11 = AX +XAT +Q+R+N1 +NT
1 + ελ2

iB1GG
TBT

1 ,

Φi12 = −λiB1Y +M1 −N1 +NT
2 ,

Φ22 = (µ− 1)Q+M2 +MT
2 −N2 −NT

2 ,

Πi1 = [τAX + ελ2
i τB1GG

TBT
1 ,−λiτB1Y , 0, τB2, 0, 0, 0, 0],

Π2 = [0, 0, 0, 0,S, 0, 0, 0],

H = [0,EY , 0, 0, 0, 0, 0, 0].

Proof: According to Lemma 3, the subsystem (11) is asymptotically stable with
T ŵẑ (s)∞ < γ, if there exist positive definite matrices P , Q, R, S and matrices
M1, M2, N1, N2 with appropriate dimensions such that



ROBUST H-ROTATING CONSENSUS CONTROL 129



Γ11 Γi12 −M1 PB2 τATS τM1 τN1

∗ Γ22 −M2 0 −λiτ(BdK)TS τM2 τN2

∗ ∗ −R 0 0 0 0

∗ ∗ ∗ −γ2I τBT
2 S 0 0

∗ ∗ ∗ ∗ −τS 0 0
∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −S


∆
= Γi < 0, (12)

where
Bd = B1 + ∆B1 (t) ,

Γ11 = PA+ATP +Q+R+N1 +NT
1 + I ,

Γi12 = −λiPBdK +M1 −N1 +NT
2 ,

Γ22 = (µ− 1)Q+M2 +MT
2 −N2 +NT

2 .

Due to the convex property of linear matrix inequality (LMI) of Γi, Γi < 0 for
all i = 1, 2, n− 1 if and only if Γ1 < 0 and Γn−1 < 0, which is associated with the
smallest eigenvalues λ1 and the largest eigenvalues λn−1, respectively.

Pre- and post-multiplying the inequality (12) with

diag
{
P−1,P−1,P−1, I,P−1,P−1,P−1

}
and applying the variable changes X = P−1, ∗̂ = P−1 ∗ P−1, where ∗ denotes
Q,R,S,M1,M2,N1,N2, the inequality (12) is congruent to Γ̂i0+Γ̂i1+Γ̂T

i1 < 0. On
one hand, Γ̂i1 can be rewritten as Γ̂i1 = Π̂T

i1X
−1Π̂2, where Π̂2 =

[
0, 0, 0, 0, Ŝ, 0, 0

]
and Π̂i1 = [τAX,−λiτBdKX, 0, τB2, 0, 0, 0]. On the other hand, according to
square inequality, it is easy to construct the following inequality:

Π̂T
i1X

−1Π̂2 + (Π̂T
i1X

−1Π̂2)T ≤ Π̂T
i1T
−1Π̂i1 + Π̂T

2 X
−1TX−1Π̂2 ,

where T is any symmetric positive definite matrix with appropriate dimensions.
Therefore, Γ̂i0 + Π̂T

i1T
−1Π̂i1 + Π̂T

2 X
−1TX−1 < 0 implies that Γ̂i < 0. Then,

defining Y = KX and applying Lemma 2 (Schur complement formula) on Γ̂i0 +
Π̂T

i1T
−1Π̂i1 + Π̂T

2 X
−1TX−1 < 0, we obtain the matrix inequality condition

Φ̄i =

 Φ̄i0 Π̄T
i1 Π̄T

2

∗ −T 0

∗ ∗ −XT−1X ,

 < 0 (13)

where
Π̄i1 = [τAX,−λiBdKX, 0, τB2, 0, 0, 0, 0],

Π̄2 = [0, 0, 0, 0, Ŝ, 0, 0, 0]
,
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Π̄i0 =



Π̄11 Π̄i12 −M̂1 B2 0 τM̂1 τN̂1 X

∗ Π22 −M̂2 0 0 τM̂2 τN̂2 0

∗ ∗ −R̂ 0 0 0 0 0
∗ ∗ ∗ −γ2I 0 0 0 0

∗ ∗ ∗ ∗ −τ Ŝ 0 0 0

∗ ∗ ∗ ∗ ∗ −Ŝ 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Ŝ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Π̄11 = AX +XAT + Q̂+ R̂+ N̂1 + N̂
T

1 ,

Π̄i12 = −λiBdY + M̂1 − N̂1 + N̂
T

2 ,

Π̄22 = (µ− 1)Q̂+ M̂2 + M̂
T

2 − N̂1 − N̂
T

1 .

Note that Bd = B1 + ∆B1 (t) = B1 +B1GF (t)E. Define

J i
∆
= [−λi(B1G)T, 0, 0, 0, 0, 0, 0, 0,−λiτ(B1G)T, 0]T,

H
∆
= [0,EY , 0, 0, 0, 0, 0, 0, 0, 0].

Now we can obtain Φ̄i = Φ̂i+J iF (t)H+HTFT (t)JT
i , where Φ̂i is constructed

through replacing Bd term in Φ̄i with B1. Note that FT (t)F (t) ≤ I, so that
there exists an ε > 0 such that Φ̂i + εJ iJ

T
i + ε−1HTH < 0 guaranteeing Φ̄i <

0. Therefore, applying Lemma 2 on Φ̂i + εJ iJ
T
i + ε−1HTH < 0 and using the

definitions ∗ ∆
= ∗̂, where ∗ denotes Q,R,S,M1,M2, N1,N2, we can obtain that

Φi < 0 (see (11)) and K = Y X−1.
On the basis of the above analysis, if Φ1 < 0, Φn−1 < 0 and K = Y X−1, the

subsystems (9) are simultaneously asymptotically stable with T ŵẑ (s)∞ < γ. Then,
by Lemma 1, the multi-agent system (1) reaches rotating consensus while satisfying
desired H∞ disturbance with attenuation index γ. This completes the proof.

3.4. Algorithm for robust H∞ rotating consensus

Because the matrix inequality condition (11) is not in the form of LMI, we cannot
directly use the LMI method to solve the matrix inequality (11). But we can turn this
problem into the LMI optimization problem by the cone-complementary linearization
algorithm [13]. First, we define a new variable U = UT > 0 such thatU ≤XT−1X.
It is easy to derive that U−1−X−1TX−1 ≥ 0. Furthermore, by defining X̄ ∆

= X−1,
T̄

∆
= T−1, Ū ∆

= U−1, and using Lemma 2, we can turn the condition (11) into
Φi0 ΠT

i1 ΠT
2 HT

∗ −T + ελ2
i τ

4B1GG
TBT

1 0 0
∗ ∗ U 0
∗ ∗ ∗ −εI

 < 0 (14)
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and [
Ū X̄
X̄ T̄

]
≥ 0,

[
X̄ I
I X

]
≥ 0,

[
T̄ I
I T

]
≥ 0,

[
Ū I
I U

]
≥ 0. (15)

Then, we may solve the following optimization problem and find a feasible solution
satisfying U ≤XT−1X:

min Trace(X̄X + T̄ T + ŪU)
s.t. (14), (15).

(16)

In conclusion, in order to solve matrix inequality condition (11), an algorithm is
designed as follows:

Algorithm 1:
Step 1. Solve the LMIs (14) and (15) for given positive scalar constants τ , µ and

γ. There exists a feasible solution set
{
X̄0,X0, T̄ 0,T 0,Ū0,U0,

}
and set k = 0.

Step 2. Solve the following optimization problem for the variables

{X̄,X, T̄ ,T , Ū ,U},
min Trace(X̄kX + T̄ kT + ŪkU + X̄Xk + T̄ T k + ŪUk),
s.t. (14), (15)

(17)

and set X̄k+1 = X̄, Xk+1 = X, T̄ k+1 = T̄ , T k+1 = T , Ūk+1 = Ū , Uk+1 = U .
Step 3. If U ≤ XT−1X for the above solution set, then save the current X,

Y and exit. Otherwise, set k = k + 1, go to step 2 and repeat the optimization
for a prescribed maximum iterative number kmax until finding a feasible solution
satisfying U ≤XT−1X. If such a solution does not exist, then exit.

If a feasible solution set is found by Algorithm 1 for the given disturbance atten-
uation index γ, delay parameter τ and µ by distributed protocol (3), the multi-agent
system (1) can reach rotating consensus with the desiredH∞ disturbance attenuation
index γ and the feedback matrix can be constructed by K = [Kv Kc] = Y X−1.

4. Result analysis and discussion

To illustrate the obtained theoretical results and optimization algorithms, nu-
merical simulations will be given in this section. Figure 1 shows a communication
topology for the multi-agent system (1) when n = 4.

Fig. 1. Communication topology of four-agent system
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Suppose that the weight of each edge is 1, the desired angular velocity ω = 1 and
the normal vector of the desired rotating plane iω =

[
−0.5 −0.5 0.5

√
2
]T

.In
order to clearly reflect the effect of external disturbances to the rotating consensus
performance, we first assume the external disturbance

w(t) = [0.4, 0.1, 0.9, 0.2, 0, 0.4,−0.5,−0.3,−0.8,−0.5,−0.3,−1.3]T

where ε (t) =

{
1 0 ≤ t ≤ 1
0 otherwise

.

Secondly, we suppose that the parameter uncertainty matrix ∆B (t) = GF (t)E,
where G = [0.02, 0.01, 0; 0.01, 0.02, 0; 0, 0, 0.01], F (t) = diag {sin 10t, sin 20t, cos 20t}
and E = I3. At last, we presume that the initial state of the multi-agent system is
taken as ξ(t = 0) = 14 ⊗

[
vT

0 , c
T
0

]T, where v0 = RT
ω0 [0,−1, 0]

T and c0 = [0, 0, 0]
T.

Suppose that the H∞ performance index γ = 0.8 and the delay d (t) = 0.1 sin t
(so τ = µ = 0.1). By Theorem 1 and Algorithm 1, we can figure out the feedback
matrix K as follows: 1.4296 0.9149 −0.6213 0.1279 0.2114 0.8991

0.2846 1.4329 −1.0665 −0.9176 0.1322 0.1044
−1.0628 −0.6188 2.0203 0.1012 0.8966 −0.2231

 .
On one hand, Fig. 2 shows the position trajectories of all agents. It is clear that

all agents reach an agreement on their positions while surrounding a common point
c with a desired angular velocity ω on a plane perpendicular to the vector iω.

Fig. 2. Position trajectories of all agents

On the other hand, Fig. 3 shows the energy relation of the controlled output and
external disturbance. Obviously, the rotating consensus of the multi-agent system
is achieved with the H∞ disturbance attenuation index.

Therefore, using the distributed protocol (3) and calculating the feedback ma-
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Fig. 3. Energy trajectories of the controlled output z (t) and external disturbance
w (t)

trix K by Theorem 1 and Algorithm 1, the multi-agent system can reach rotating
consensus while satisfying the desired H∞ disturbance attenuation index. So we
validate the effectiveness of the proposed protocol and demonstrate the correctness
of Theorem 1 and Algorithm 1.

5. Conclusion

In this paper, robust delay-dependent H∞ control problems are studied for ro-
tating consensus of second-order multi-agent systems with parameter uncertainties,
external disturbances and time-varying delay in three-dimensional space. Firstly, a
rotating consensus is defined in three-dimensional space. Based on state feedback
of neighbors, a distributed control protocol is designed. Then a sufficient delay-
dependent condition in terms of the matrix inequalities is derived to make all agents
asymptotically reach rotating consensus with the desired H∞ performance index.
Furthermore, an algorithm is elaborately designed to get feasible solution to this
condition. The main contributions of this paper are as follows: First, the influence
of parameter uncertainty, external disturbances and time-varying delay on rotating
consensus are considered at the same time; Second, a delay-dependent control con-
dition is derived, whose complexity is lower because the system is decoupled; Third,
an algorithm is proposed for calculating parameters of control protocol.
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